LIDAR Based Vehicle Classification

نویسنده

  • Benjamin Coifman
چکیده

Vehicle classification data are used for numerous transportation applications. Most of the classification data come from permanent in-pavement sensors or temporary sensors mounted on the pavement. Moving out of the right-of-way, this study develops a LIDAR (light detection and ranging) based classification system with the sensors mounted in a side-fire configuration next to the road. The first step is to distinguish between vehicle returns and non-vehicle returns, and then cluster the vehicle returns into individual vehicles. The algorithm examines each vehicle cluster to check if there is any evidence of partial occlusion from another vehicle. Several measurements are taken from each non-occluded cluster to classify the vehicle into one of six classes: motorcycle, passenger vehicle, passenger vehicle pulling a trailer, single-unit truck, single-unit truck pulling a trailer, and multi-unit truck. The algorithm was evaluated at six different locations under various traffic conditions. Compared to concurrent video ground truth data for over 27,000 vehicles on a per-vehicle basis, 11% of the vehicles are suspected of being partially occluded. The algorithm correctly classified over 99.5% of the remaining, non-occluded vehicles. This research also uncovered emerging challenges that likely apply to most classification systems: differentiating commuter cars from motorcycles. Occlusions are inevitable in this proof of concept study since the LIDAR sensors were mounted roughly 6 ft above the road, well below the tops of many vehicles. Ultimately we envision using a combination of a higher vantage point (in future work), and shape information (begun herein) to greatly reduce the impacts of occlusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Vehicle Recognition from Lidar Data

This paper focuses on the potential of using airborne laser scanning technology for transportation applications, especially for identifying moving objects on roads. An adaptive thresholding algorithm is used to segment the LiDAR point cloud, which is followed by a selection process to extract the vehicles. The LiDAR data are capable of measuring the vertical profile of a vehicle, and hence prov...

متن کامل

Vehicle Activity Indication from Airborne Lidar Data of Urban Areas by Binary Shape Classification of Point Sets

This paper presents a generic scheme to analyze urban traffic via vehicle motion indication from airborne laser scanning (ALS) data. The scheme comprises two main steps performed progressively vehicle extraction and motion status classification. The step for vehicle extraction is intended to detect and delineate single vehicle instances as accurate and complete as possible, while the step for m...

متن کامل

Model-based Vehicle Detection from Lidar Data

Airborne laser scanning has established itself as a dominant technology providing high quality surface data for a variety of applications. LiDAR has substantially widened the use of mapping, for instance, in the late nineties, telecommunication industry required large volumes of high-density DSM data. In addition, research has recently shown promising results in extracting features such as man-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011